0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 DuplicateArgsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 IDP
↳19 IDPNonInfProof (⇐)
↳20 AND
↳21 IDP
↳22 IDependencyGraphProof (⇔)
↳23 TRUE
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Cond_Load661(x1, x2, x3) → Cond_Load661(x1, x3)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i104[0] > 0 →* TRUE)∧(i104[0] →* i104[1]))
(1) -> (2), if ((i104[1] →* i123[2])∧(i104[1] →* i120[2]))
(1) -> (4), if ((i104[1] →* i120[4])∧(i104[1] →* 0))
(2) -> (3), if ((i123[2] →* i123[3])∧(i123[2] > 0 →* TRUE)∧(i120[2] →* i120[3]))
(3) -> (2), if ((i123[3] + -1 →* i123[2])∧(i120[3] + -1 →* i120[2]))
(3) -> (4), if ((i120[3] + -1 →* i120[4])∧(i123[3] + -1 →* 0))
(4) -> (0), if ((i120[4] →* i104[0])∧(0 →* i104[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i104[0] > 0 →* TRUE)∧(i104[0] →* i104[1]))
(1) -> (2), if ((i104[1] →* i123[2])∧(i104[1] →* i120[2]))
(1) -> (4), if ((i104[1] →* i120[4])∧(i104[1] →* 0))
(2) -> (3), if ((i123[2] →* i123[3])∧(i123[2] > 0 →* TRUE)∧(i120[2] →* i120[3]))
(3) -> (2), if ((i123[3] + -1 →* i123[2])∧(i120[3] + -1 →* i120[2]))
(3) -> (4), if ((i120[3] + -1 →* i120[4])∧(i123[3] + -1 →* 0))
(4) -> (0), if ((i120[4] →* i104[0])∧(0 →* i104[0]))
(1) (>(i104[0], 0)=TRUE∧i104[0]=i104[1] ⇒ LOAD661(i104[0], i104[0])≥NonInfC∧LOAD661(i104[0], i104[0])≥COND_LOAD661(>(i104[0], 0), i104[0])∧(UIncreasing(COND_LOAD661(>(i104[0], 0), i104[0])), ≥))
(2) (>(i104[0], 0)=TRUE ⇒ LOAD661(i104[0], i104[0])≥NonInfC∧LOAD661(i104[0], i104[0])≥COND_LOAD661(>(i104[0], 0), i104[0])∧(UIncreasing(COND_LOAD661(>(i104[0], 0), i104[0])), ≥))
(3) (i104[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD661(>(i104[0], 0), i104[0])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i104[0] ≥ 0∧[(-1)bso_18] + i104[0] ≥ 0)
(4) (i104[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD661(>(i104[0], 0), i104[0])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i104[0] ≥ 0∧[(-1)bso_18] + i104[0] ≥ 0)
(5) (i104[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD661(>(i104[0], 0), i104[0])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i104[0] ≥ 0∧[(-1)bso_18] + i104[0] ≥ 0)
(6) (i104[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD661(>(i104[0], 0), i104[0])), ≥)∧[(4)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i104[0] ≥ 0∧[1 + (-1)bso_18] + i104[0] ≥ 0)
(7) (i104[1]=i123[2]∧i104[1]=i120[2] ⇒ COND_LOAD661(TRUE, i104[1])≥NonInfC∧COND_LOAD661(TRUE, i104[1])≥LOAD759(i104[1], i104[1])∧(UIncreasing(LOAD759(i104[1], i104[1])), ≥))
(8) (COND_LOAD661(TRUE, i104[1])≥NonInfC∧COND_LOAD661(TRUE, i104[1])≥LOAD759(i104[1], i104[1])∧(UIncreasing(LOAD759(i104[1], i104[1])), ≥))
(9) ((UIncreasing(LOAD759(i104[1], i104[1])), ≥)∧[(-1)bso_20] ≥ 0)
(10) ((UIncreasing(LOAD759(i104[1], i104[1])), ≥)∧[(-1)bso_20] ≥ 0)
(11) ((UIncreasing(LOAD759(i104[1], i104[1])), ≥)∧[(-1)bso_20] ≥ 0)
(12) ((UIncreasing(LOAD759(i104[1], i104[1])), ≥)∧0 = 0∧[(-1)bso_20] ≥ 0)
(13) (i104[1]=i120[4]∧i104[1]=0 ⇒ COND_LOAD661(TRUE, i104[1])≥NonInfC∧COND_LOAD661(TRUE, i104[1])≥LOAD759(i104[1], i104[1])∧(UIncreasing(LOAD759(i104[1], i104[1])), ≥))
(14) (COND_LOAD661(TRUE, 0)≥NonInfC∧COND_LOAD661(TRUE, 0)≥LOAD759(0, 0)∧(UIncreasing(LOAD759(i104[1], i104[1])), ≥))
(15) ((UIncreasing(LOAD759(i104[1], i104[1])), ≥)∧[(-1)bso_20] ≥ 0)
(16) ((UIncreasing(LOAD759(i104[1], i104[1])), ≥)∧[(-1)bso_20] ≥ 0)
(17) ((UIncreasing(LOAD759(i104[1], i104[1])), ≥)∧[(-1)bso_20] ≥ 0)
(18) (i123[2]=i123[3]∧>(i123[2], 0)=TRUE∧i120[2]=i120[3] ⇒ LOAD759(i120[2], i123[2])≥NonInfC∧LOAD759(i120[2], i123[2])≥COND_LOAD759(>(i123[2], 0), i120[2], i123[2])∧(UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥))
(19) (>(i123[2], 0)=TRUE ⇒ LOAD759(i120[2], i123[2])≥NonInfC∧LOAD759(i120[2], i123[2])≥COND_LOAD759(>(i123[2], 0), i120[2], i123[2])∧(UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥))
(20) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]i123[2] + [(2)bni_21]i120[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(21) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]i123[2] + [(2)bni_21]i120[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(22) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]i123[2] + [(2)bni_21]i120[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(23) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧[(2)bni_21] = 0∧[(2)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]i123[2] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(24) (i123[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧[(2)bni_21] = 0∧[bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]i123[2] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(25) (i123[2]=i123[3]∧>(i123[2], 0)=TRUE∧i120[2]=i120[3]∧+(i123[3], -1)=i123[2]1∧+(i120[3], -1)=i120[2]1 ⇒ COND_LOAD759(TRUE, i120[3], i123[3])≥NonInfC∧COND_LOAD759(TRUE, i120[3], i123[3])≥LOAD759(+(i120[3], -1), +(i123[3], -1))∧(UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥))
(26) (>(i123[2], 0)=TRUE ⇒ COND_LOAD759(TRUE, i120[2], i123[2])≥NonInfC∧COND_LOAD759(TRUE, i120[2], i123[2])≥LOAD759(+(i120[2], -1), +(i123[2], -1))∧(UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥))
(27) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] + [(2)bni_23]i120[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(28) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] + [(2)bni_23]i120[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(29) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] + [(2)bni_23]i120[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(30) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23] = 0∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
(31) (i123[2] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23] = 0∧[bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
(32) (i123[2]=i123[3]∧>(i123[2], 0)=TRUE∧i120[2]=i120[3]∧+(i120[3], -1)=i120[4]∧+(i123[3], -1)=0 ⇒ COND_LOAD759(TRUE, i120[3], i123[3])≥NonInfC∧COND_LOAD759(TRUE, i120[3], i123[3])≥LOAD759(+(i120[3], -1), +(i123[3], -1))∧(UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥))
(33) (>(i123[2], 0)=TRUE∧+(i123[2], -1)=0 ⇒ COND_LOAD759(TRUE, i120[2], i123[2])≥NonInfC∧COND_LOAD759(TRUE, i120[2], i123[2])≥LOAD759(+(i120[2], -1), +(i123[2], -1))∧(UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥))
(34) (i123[2] + [-1] ≥ 0∧i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] + [(2)bni_23]i120[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(35) (i123[2] + [-1] ≥ 0∧i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] + [(2)bni_23]i120[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(36) (i123[2] + [-1] ≥ 0∧i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] + [(2)bni_23]i120[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(37) (i123[2] + [-1] ≥ 0∧i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23] = 0∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
(38) (i123[2] ≥ 0∧i123[2] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(2)bni_23] = 0∧[bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i123[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
(39) (i120[4]=i104[0]∧0=i104[0] ⇒ LOAD759(i120[4], 0)≥NonInfC∧LOAD759(i120[4], 0)≥LOAD661(i120[4], 0)∧(UIncreasing(LOAD661(i120[4], 0)), ≥))
(40) (LOAD759(0, 0)≥NonInfC∧LOAD759(0, 0)≥LOAD661(0, 0)∧(UIncreasing(LOAD661(i120[4], 0)), ≥))
(41) ((UIncreasing(LOAD661(i120[4], 0)), ≥)∧[(-1)bso_26] ≥ 0)
(42) ((UIncreasing(LOAD661(i120[4], 0)), ≥)∧[(-1)bso_26] ≥ 0)
(43) ((UIncreasing(LOAD661(i120[4], 0)), ≥)∧[(-1)bso_26] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD661(x1, x2)) = [2] + x2 + x1
POL(COND_LOAD661(x1, x2)) = [2] + x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(LOAD759(x1, x2)) = [2] + [-1]x2 + [2]x1
POL(COND_LOAD759(x1, x2, x3)) = [2] + [-1]x3 + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
LOAD661(i104[0], i104[0]) → COND_LOAD661(>(i104[0], 0), i104[0])
COND_LOAD759(TRUE, i120[3], i123[3]) → LOAD759(+(i120[3], -1), +(i123[3], -1))
LOAD661(i104[0], i104[0]) → COND_LOAD661(>(i104[0], 0), i104[0])
COND_LOAD661(TRUE, i104[1]) → LOAD759(i104[1], i104[1])
LOAD759(i120[2], i123[2]) → COND_LOAD759(>(i123[2], 0), i120[2], i123[2])
LOAD759(i120[4], 0) → LOAD661(i120[4], 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((i104[1] →* i123[2])∧(i104[1] →* i120[2]))
(1) -> (4), if ((i104[1] →* i120[4])∧(i104[1] →* 0))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((i104[1] →* i123[2])∧(i104[1] →* i120[2]))
(3) -> (2), if ((i123[3] + -1 →* i123[2])∧(i120[3] + -1 →* i120[2]))
(2) -> (3), if ((i123[2] →* i123[3])∧(i123[2] > 0 →* TRUE)∧(i120[2] →* i120[3]))
(1) -> (4), if ((i104[1] →* i120[4])∧(i104[1] →* 0))
(3) -> (4), if ((i120[3] + -1 →* i120[4])∧(i123[3] + -1 →* 0))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if ((i123[3] + -1 →* i123[2])∧(i120[3] + -1 →* i120[2]))
(2) -> (3), if ((i123[2] →* i123[3])∧(i123[2] > 0 →* TRUE)∧(i120[2] →* i120[3]))
(1) (i123[2]=i123[3]∧>(i123[2], 0)=TRUE∧i120[2]=i120[3]∧+(i123[3], -1)=i123[2]1∧+(i120[3], -1)=i120[2]1 ⇒ COND_LOAD759(TRUE, i120[3], i123[3])≥NonInfC∧COND_LOAD759(TRUE, i120[3], i123[3])≥LOAD759(+(i120[3], -1), +(i123[3], -1))∧(UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥))
(2) (>(i123[2], 0)=TRUE ⇒ COND_LOAD759(TRUE, i120[2], i123[2])≥NonInfC∧COND_LOAD759(TRUE, i120[2], i123[2])≥LOAD759(+(i120[2], -1), +(i123[2], -1))∧(UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥))
(3) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i123[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i123[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i123[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i123[2] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (i123[2] ≥ 0 ⇒ (UIncreasing(LOAD759(+(i120[3], -1), +(i123[3], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]i123[2] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (i123[2]=i123[3]∧>(i123[2], 0)=TRUE∧i120[2]=i120[3] ⇒ LOAD759(i120[2], i123[2])≥NonInfC∧LOAD759(i120[2], i123[2])≥COND_LOAD759(>(i123[2], 0), i120[2], i123[2])∧(UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥))
(9) (>(i123[2], 0)=TRUE ⇒ LOAD759(i120[2], i123[2])≥NonInfC∧LOAD759(i120[2], i123[2])≥COND_LOAD759(>(i123[2], 0), i120[2], i123[2])∧(UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥))
(10) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i123[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i123[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i123[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (i123[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i123[2] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (i123[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD759(>(i123[2], 0), i120[2], i123[2])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i123[2] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD759(x1, x2, x3)) = [-1] + x3
POL(LOAD759(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [2]
POL(0) = 0
COND_LOAD759(TRUE, i120[3], i123[3]) → LOAD759(+(i120[3], -1), +(i123[3], -1))
COND_LOAD759(TRUE, i120[3], i123[3]) → LOAD759(+(i120[3], -1), +(i123[3], -1))
LOAD759(i120[2], i123[2]) → COND_LOAD759(>(i123[2], 0), i120[2], i123[2])
LOAD759(i120[2], i123[2]) → COND_LOAD759(>(i123[2], 0), i120[2], i123[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |